Analyzing Data from Long-Term Care Facility Settings

Shelley A. Blozis
UC Davis
http://ilvrem.faculty.ucdavis.edu/
My background

Ph.D., University of Minnesota
Psychometrics and Statistics

– Multilevel models for complex data
– Longitudinal data analysis
– Missing data

– Health psychology, behavioral medicine
SAMPLING DESIGNS FROM STUDIES OF LONG-TERM CARE FACILITIES
Spore et al. 1996

• Targeted 10 states
 – Random sampling of counties within states
 – Within-counties, random sample of facilities, stratified by home size
 – Within facility, random sample of residents
 – N = 3257 residents within more than 493 homes

PI: Manton, Kenneth G., Duke University

- Nationally-representative sample both of the community and of institutionalized populations
- Longitudinal
 - sample persons join the survey once they reach 65 years of age and stay in the survey until they either die or are lost to follow-up
- At each wave, a screener questionnaire is used to divide the sample into three parts
 - non-disabled
 - disabled but living in the community
 - disabled living in an institution
non-disabled

disabled but living in the community

disabled living in an institution

Person 1 … Person n

Person 2

Person j

Not necessarily complete data at all waves
A common theme in studies of long-term care facilities is a complex sampling design

- state
- county
- facility
- resident
A common theme in studies of long-term care facilities is a complex sampling design

- state \text{ FIXED}
- county
- facility
- resident
A common theme in studies of long-term care facilities is a complex sampling design

- state FIXED
- county RANDOM
- facility
- resident
A common theme in studies of long-term care facilities is a complex sampling design

- state FIXED
- county RANDOM
- facility RANDOM
- resident
A common theme in studies of long-term care facilities is a complex sampling design

- state FIXED
- county RANDOM
- facility RANDOM
- resident RANDOM
A common theme in studies of long-term care facilities is a complex sampling design

- **Disability Status**
 1. non-disabled
 2. disabled but living in the community
 3. disabled living in an institution

- **Person**

- **Year**
A common theme in studies of long-term care facilities is a complex sampling design

- **Disability Status** FIXED
 1. non-disabled
 2. disabled but living in the community
 3. disabled living in an institution
- **Person**
- **Year**
A common theme in studies of long-term care facilities is a complex sampling design.

- Disability Status FIXED
 1. non-disabled
 2. disabled but living in the community
 3. disabled living in an institution
- Person RANDOM
- Year
A common theme in studies of long-term care facilities is a complex sampling design

• Disability Status FIXED
 1. non-disabled
 2. disabled but living in the community
 3. disabled living in an institution

• Person RANDOM

• Year RANDOM
Multilevel Data Structure

state FIXED
↓
county RANDOM
↓
facility RANDOM
↓
resident RANDOM

Disability Status FIXED
↓
Person RANDOM
↓
Year RANDOM
Nursing Facility Quality Review

• The Nursing Facility Quality Review
 – statewide measurement of the quality of care, quality of life, consumer satisfaction, and medication use in Texas Medicaid-certified nursing facilities
 – Principal Investigator: Dr. Tracie C. Harrison
Resident Reports of Quality of Life

n = 968 residents
within 815 facilities

- QOL is an average of responses to 7 items
- Each item was measured on a 5-point scale
 - Mean QOL = 2.2
 - SD = 0.83
Resident Reports of Quality of Life
n = 968 residents within 815 facilities

- A portion of the respondents lived in the same facility as other respondents
- If the context influences QOL, then QOL reported by residents who share the same facility may be correlated
Resident Reports of Quality of Life

n = 968 residents within 815 facilities

- Calculate the intraclass correlation coefficient
- 22% of the variation in QOL scores is attributed to the facility
 - Accounting for the nesting of residents within facilities is important in the statistical analysis
Predict QOL by Access to Outdoor Space

• Access to outdoor space
 – Residents rated on a 5-point scale
 • 1=always
 • 2=most of the time
 • 3=sometimes
 • 4=rarely
 • 5=never
Access to outdoors \rightarrow QOL

- **Ignore** nesting of residents within facilities
- Account for nesting of residents within facilities
Access to outdoors → QOL

• **Ignore** nesting of residents within facilities

• Account for nesting of residents within facilities

The standard error is appropriately larger after accounting for the nesting of residents within facilities
Interpreting the effect of a resident-level predictor on the outcome

Access to outdoors → QOL

- **Within-facility effect** of “access to outdoors”
 - Expected difference in QOL between two residents in the same facility who rating of “access to outdoors” differ by one point

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|----------|----------|----------------|-----|---------|-------|
| Intercept| 2.1597 | 0.02874 | 551 | 75.15 | < .0001|
| outdoorC | 0.2265 | 0.02773 | 378 | 8.17 | < .0001|
We can also estimate the between-facility effect of “access to outdoors”

• Calculate a facility average of “access to outdoors”
 – “MeanOutdoor”

• Between-facility effect of “access to outdoors”
 – Expected difference in the mean of QOL between two facilities that differ by one point in “MeanOutdoor”

<table>
<thead>
<tr>
<th>Solution for Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
</tr>
<tr>
<td>Intercept</td>
</tr>
<tr>
<td>outdoorC</td>
</tr>
<tr>
<td>meanoutdoor</td>
</tr>
</tbody>
</table>
Contextual Effect

• Within-facility effect
• Between-facility effect
• Contextual effect
 – A difference: Between-facility effect – Within-facility effect

| Effect | Estimate | Standard Error | DF | t Value | Pr > |t| |
|--------------|----------|----------------|-----|---------|------|---|
| Intercept | 1.7122 | 0.05723 | 609 | 29.92 | <.0001 |
| outdoorC | 0.2265 | 0.02723 | 357 | 8.32 | <.0001 |
| meanoutdoor | 0.2303 | 0.02589 | 357 | 8.89 | <.0001 |

-.2303 - .2265 = .0038

– Interpretation
 • Expected difference in QOL between two residents who have the same value of “access to outdoors” but who live in facilities that differ in MeanOutdoor by one point
 • The benefit of living in facility j versus facility k
A multilevel LTC data set affords opportunities to study resident-level AND facility-level effects on an outcome

• Resident level: Access to outdoors → QOL

• Facility level: Facility size
 – Small (<50 beds)
 – Medium (50-99 beds)
 – Medium-Large (100-199 beds)
 – Large (> 199 beds)
Facility level

Resident level

Facility size \rightarrow Mean QOL

Access to outdoors \rightarrow QOL
Facility level Facility size → Mean QOL

Resident level Access to outdoors → QOL

(Simultaneous estimation of the effects)
Does Facility Size moderate the relationship between a resident’s “access to outdoors” and QOL?

Facility level

Facility size → Mean QOL

Resident level

Access to outdoors → QOL

In addition to testing resident-level predictor on QOL and facility-level predictor on QOL, we can test whether a facility-level variable MODERATES a resident-level relationship.

This is called a cross-level interaction.
The methodology

• Multilevel models
 – A.k.a. mixed-effects models, random coefficient models, random-effects models, hierarchical models

• Provide opportunities to study predictors at all levels of the hierarchy

• Recall 1st example:
 – state
 – county
 – facility
 – resident
Questions by Study Type

• Cross-sectional multilevel data
• Residents nested within LTC facilities
 – To what extent do resident outcomes vary across facilities?
 • 20% of variation in QOL scores was attributable to the facilities
 – Do facility-factors, such as size, affect resident outcomes?
 – Do facility-level factors moderate the relationship between resident-level predictors and outcomes?
 • E.g., Does the resident-to-staff ratio moderate the relationship between a patient’s sense of control and their QOL?
Questions by Study Type

• Longitudinal data
 – Repeated measures for residents observed over time
 – Residents are nested within different LTC facilities
 • Does QOL change over time?
 • To what extent do characteristics of change in QOL (e.g., rate of change) vary across residents? across facilities?
 • Do resident-level factors, such as gender, moderate the level of QOL or the rate of change in QOL?
Resources

• Books

• Software
 – R, SPSS, SAS, Stata, Mplus, HLM, LISREL, SUDAAN
Thank you