

Analyzing Data from Long-Term Care Facility Settings

Shelley A. Blozis UC Davis http://ilvrem.faculty.ucdavis.edu/

My background

Ph.D., University of Minnesota Psychometrics and Statistics

- Multilevel models for complex data
- Longitudinal data analysis
- Missing data

– Health psychology, behavioral medicine

SAMPLING DESIGNS FROM STUDIES OF LONG-TERM CARE FACILITIES

Spore et al. 1996

- Targeted 10 states
 - Random sampling of counties within states
 - Within-counties, random sample of facilities, stratified by home size
 - Within facility, random sample of residents
 - N = 3257 residents within more than 493 homes

Spore D, Mor V, Larrat EP, Hiris J, Hawes C. Regulatory environment and psychotropic use in board-and-care facilities: results of a 10-state study. J Gerontol. 1996;51A:M131-M141.

National Long-Term Care Survey: 1982, 1984, 1989, 1994, 1999, and 2004

PI: Manton, Kenneth G., Duke University

- Nationally-representative sample both of the community and of institutionalized populations
- Longitudinal
 - sample persons join the survey once they reach 65 years of age and stay in the survey until they either die or are lost to follow-up
- At each wave, a screener questionnaire is used to divide the sample into three parts
 - non-disabled
 - disabled but living in the community
 - disabled living in an institution

For each person, repeated measures: 1982, 1984, 1989, 1994, 1999, and 2004

- state
- county
- facility
- resident

- state FIXED
- county
- facility
- resident

- state FIXED
- county RANDOM
- facility
- resident

- state FIXED
- county RANDOM
- facility RANDOM
- resident

- state FIXED
- county RANDOM
- facility RANDOM
- resident RANDOM

- Disability Status
 - 1. non-disabled
 - 2. disabled but living in the community
 - 3. disabled living in an institution
- Person
- Year

- Disability Status FIXED
 - 1. non-disabled
 - 2. disabled but living in the community
 - 3. disabled living in an institution
- Person
- Year

- Disability Status FIXED
 - 1. non-disabled
 - 2. disabled but living in the community
 - 3. disabled living in an institution
- Person RANDOM
- Year

- Disability Status FIXED
 - 1. non-disabled
 - 2. disabled but living in the community
 - 3. disabled living in an institution
- Person RANDOM
- Year RANDOM

Multilevel Data Structure

state FIXED ↓ county RANDOM ↓ facility RANDOM ↓ resident RANDOM Disability Status FIXED ↓ Person RANDOM ↓ Year RANDOM

Nursing Facility Quality Review

- The Nursing Facility Quality Review
 - statewide measurement of the quality of care, quality of life, consumer satisfaction, and medication use in Texas Medicaid-certified nursing facilities
 - Principal Investigator: Dr. Tracie C. Harrison

Resident Reports of Quality of Life n = 968 residents within 815 facilities

- QOL is an average of responses to 7 items
- Each item was measured on a 5-point scale
 - Mean QOL = 2.2
 - SD = 0.83

Resident Reports of Quality of Life n = 968 residents within 815 facilities

- A portion of the respondents lived in the same facility as other respondents
- If the context influences QOL, then QOL reported by residents who share the same facility may be correlated

Resident Reports of Quality of Life n = 968 residents within 815 facilities

- Calculate the <u>intraclass</u>
 <u>correlation coefficient</u>
- 22% of the variation in QOL scores is attributed to the facility
 - Accounting for the nesting of residents within facilities is important in the statistical analysis

Predict QOL by Access to Outdoor Space

- Access to outdoor space
 - Residents rated on a 5-point scale
 - 1=always
 - 2=most of the time
 - 3=sometimes
 - 4=rarely
 - 5=never

Access to outdoors \rightarrow QOL

Ignore nesting of residents within facilities

Solution for Fixed Effects							
Effect Estimate Standard DF t Value Pr > t							
Intercept	2.1597	0.02602	967	83.00	<.0001		
outdoorC	0.2265	0.03255	967	6.96	<.0001		

Account for nesting of residents within facilities

Solution for Fixed Effects							
Effect Estimate Standard Error DF t Value Pr > t							
Intercept	2.1597	0.02874	551	75.15	<.0001		
outdoorC	0.2265	0.02773	378	8.17	<.0001		

Access to outdoors \rightarrow QOL

Ignore nesting of residents within facilities

Account for nesting of residents within facilities

	Solution for Fixed Effects				
Effect	Estimate	Standard Error	DF	t Value	Pr > t
ntercept	1.7210	0.04507	967	38.19	<.0001
_17_14	0.2239	0.01916	967	11.69	<.0001
			K		

The standard error is appropriately larger after accounting for the nesting of residents within facilities

Interpreting the effect of a resident-level predictor on the outcome

Access to outdoors \rightarrow QOL

- <u>Within-facility effect</u> of "access to outdoors"
 - Expected difference in QOL between two residents in the same facility who rating of "access to outdoors" differ by one point

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr								
Intercept	2.1597	0.02874	551	75.15	<.0001			
outdoorC	0.2265	0.02773	378	8.17	<.0001			

We can also estimate the between-facility effect of "access to outdoors"

Calculate a facility average of "access to outdoors"

– "MeanOutdoor"

- Between-facility effect of "access to outdoors"
 - Expected difference in the mean of QOL between two facilities that differ by one point in

"MeanOutdoor"

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr > 1								
Intercept	1.7122	0.05723	609	29.92	<.0001			
outdoorC	0.2265	0.02723	357	8.32	<.0001			
meanoutdoor	0.2303	0.02589	357	8.89	<.0001			

Contextual Effect

- Within-facility effect
- Between-facility effect
- Contextual effect
 - A difference: Between-facility effect Within-facility effect

Solution for Fixed Effects								
Effect Estimate Standard DF t Value Pr > 1								
Intercept	1.7122	0.05723	609	29.92	<.0001			
outdoorC	0.2265	0.02723	357	8.32	<.0001			
meanoutdoor	0.2303	0.02589	357	8.89	<.0001			

.2303 - .2265 = .0038

– Interpretation

- Expected difference in QOL between two residents who have the same value of "access to outdoors" but who live in facilities that differ in MeanOutdoor by one point
- The benefit of living in facility j versus facility k

A multilevel LTC data set affords opportunities to study resident-level AND facility-level effects on an outcome

- Resident level: Access to outdoors \rightarrow QOL
- Facility level: Facility size
 - Small (<50 beds)</p>
 - Medium (50-99 beds)
 - Medium-Large (100-199 beds)
 - Large (> 199 beds)

Facility level Facility size \rightarrow Mean QOL

Resident level

Access to outdoors $\rightarrow \text{QOL}$

Facility level Facility size \rightarrow Mean QOL

Resident level Access to outdoors \rightarrow QOL

(Simultaneous estimation of the effects)

Type 3 Tests of Fixed Effects							
Effect Num DF Den DF F Value Pr >							
outdoorC	1	378	66.73	<.0001			
FacilitySize_CMS_Cat	3	535	0.47	0.7018			

Does Facility Size <u>moderate</u> the relationship between a resident's "access to outdoors" and QOL?

Facility levelFacility size \rightarrow Mean QOLResident levelAccess to outdoors \rightarrow QOL

In addition to testing <u>resident-level</u> predictor on QOL and <u>facility-level</u> predictor on QOL, we can test whether a facility-level variable MODERATES a resident-level relationship

Type 3 Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
outdoorC	1	373	4.43	0.0359			
FacilitySize_CMS_Cat	3	535	0.47	0.7020			
outdoorC*FacilitySiz	3	373	2.90	0.0351			

This is called a <u>cross-level</u> <u>interaction</u>

The methodology

- Multilevel models
 - A.k.a. mixed-effects models, random coefficient models, random-effects models, hierarchical models
- Provide opportunities to study predictors at all levels of the hierarchy
- Recall 1st example:
 - state
 - county
 - facility
 - resident

Questions by Study Type

- Cross-sectional multilevel data
- Residents nested within LTC facilities
 - To what extent do resident outcomes vary across facilities?
 - 20% of variation in QOL scores was attributable to the facilties
 - Do facility-factors, such as size, affect resident outcomes?
 - Do facility-level factors moderate the relationship between resident-level predictors and outcomes?
 - E.g., Does the resident-to-staff ratio moderate the relationship between a patient's sense of control and their QOL?

Questions by Study Type

- Longitudinal data
 - Repeated measures for residents observed over time
 - Residents are nested within different LTC facilities
 - Does QOL change over time?
 - To what extent do characteristics of change in QOL (e.g., rate of change) vary across residents? across facilities?
 - Do resident-level factors, such as gender, moderate the level of QOL or the rate of change in QOL?

Resources

- Books
 - Kreft, I., & de Leeuw, J. (1999). *Introducing* multilevel modeling. Thousand Oaks, CA: Sage.
- Software

– R, SPSS, SAS, Stata, Mplus, HLM, LISREL, SUDAAN

Thank you